Statistical Models for Complex Extremes

Anthony Davison

Joint with
Peiman Asadi, Raphaël de Fondeville, Sebastian Engelke, Maria Süveges

Funding: Swiss National Science Foundation, Swissnuclear, Swiss Federal Office of the Environment

A 'Simple’ Problem 3
A More Complex Problem 16
Threshold exceedances 37
Closing 49

A ‘Simple’ Problem

Fukushima, March 2011

http://stat.epfl.ch
CLADAG—Milano - slide 3

Nuclear power safety

$\square \quad$ Fukushima \Rightarrow nuclear power safety concerns worldwide
\square Swiss nuclear regulator asked for (re-)assessment of vulnerability of the four nuclear plants to

- high and low air temperatures
- high and low river water temperatures
- high winds (and tornados)
- intense rainfall, snowload, lightning strikes,
- earthquakes and any tsunamis are dealt with separately!
\square Task: estimate quantiles for probabilities 10^{-4} per year (and 10^{-7} for high winds), and give their uncertainties
- based on 25 years of data or so at the plants themselves, and (at very most, and only for comparison) 150 years of data nearby

Swiss nuclear plants

http://stat.epfl.ch
CLADAG—Milano - slide 5

Air temperature maxima and minima

http://stat.epfl.ch

Founders

Maurice René Fréchet (1878-1973)
Ronald Alymer Fisher (1890-1962)
Leonard Henry Caleb Tippett (1902-1985)

http://stat.epfl.ch
CLADAG—Milano - slide 8

Modelling maxima

$\square \quad$ A distribution G for maxima must satisfy the max-stability relation

$$
G^{m}\left(b_{m}+a_{m} y\right)=G(y), \quad m=1,2, \ldots, \quad\left\{a_{m}\right\}>0,\left\{b_{m}\right\} \subset \mathbb{R} .
$$Only non-trivial solution is the generalized extreme-value (GEV) distribution,

$$
G(y)=\exp \left\{-\left[1+\xi\left(\frac{y-\mu}{\tau}\right)\right]_{+}^{-1 / \xi}\right\},
$$

where $u_{+}=\max (u, 0)$, and μ and τ are location and scale parameters.
$\square \quad \xi$ is a shape parameter determining the rate of tail decay, with

- $\xi>0$ giving the heavy-tailed (Fréchet) case,
- $\xi=0$ giving the light-tailed (Gumbel) case-corresponds to Gaussian data,
- $\xi<0$ giving the short-tailed (reverse Weibull) case.
$\square \quad \xi$ is hard to estimate, but crucial because it controls probabilities of large events.

GEV and shape parameter ξ

\square PDFs of the Gumbel $(\xi=0)$, the Fréchet $(\xi=0)$ and the (reverse) Weibull $(\xi<0)$.The Fréchet is bounded below, and the reverse Weibull is bounded above.
\square The standard Weibull is a distribution for minima.

Data analysis

Figure 9: Seasonal 50- and 10000 year return levels (red and black, respectively) as a function of time in 1998 (left, coinciding with the reference model in Figure 7) and in 2050 (right). 95% confidence intervals from parametric bootstrap are shown as pink and light grey bands.

Fitted GEV to monthly maxima for winter/summer seasons, allowing for monthly variation in location and (linear!) time trend
\square Estimated shape parameter $\widehat{\xi}<0$ implies upper bound on maximal temperature
$\square \quad$ Attempt to allow for uncertainty due to

- parameter estimation
- stochastic variation of future events
- number of observations contributing to maximum $(30 \neq \infty)$
http://stat.epfl.ch

General remarks

Extreme value theory is based on limiting models for tails of distributions:

- Generalised extreme-value distribution (GEV) applies for maxima of an infinite sample,
- Generalized Pareto distribution (GPD) applies for peaks over an 'infinite' threshold,
both satisfying notions of stability from mathematical considerations.Could of course fit many other models, but with weaker mathematical justification.In practice GEV/GPD fitted to finite samples, so extrapolation may be worrisome.Relevant data often limited, so need to combine information from elsewhere.Do we trust the mathematical models for real phenomena?

Black swans ...

To base extrapolation on max-stability, we assume that the unseen tail has no surprises (aka black swans):

http://stat.epfl.ch
CLADAG—Milano - slide 13

Black swans ...
\square To base extrapolation on max-stability, we assume that the unseen tail has no surprises (aka black swans):

http://stat.epfl.ch
CLADAG—Milano - slide 16

Problem

$\square \quad$ Aim to estimate flood risk on Aare-Rhine river network up to 2100, taking into account climate changeHow to assess combined flooding risk, based on short time series?Probabilities needed for events on network with annual probability 10^{-4}.Several university institutes involved (hydrology, flood hydraulics, geography, climate science, ...)

Max-stable processes

The GEV distribution is max-stable: maxima of independent GEV variables are also GEV-in fact, this is the defining property of the GEV distribution, and allows extrapolation to rare events.
\square For the unit Fréchet, $\operatorname{GEV}(1,1,1)$, distribution, this means that if $Z, Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \exp (-1 / z)$, then for any n,

$$
\max \left\{Z_{1}, \ldots, Z_{n}\right\} \stackrel{D}{=} n Z
$$

\square For space/space-time problems we need a process analogue of the GEV, i.e., we seek a process $Z(x)$ such that if $Z_{1}(x), \ldots, Z_{n}(x) \stackrel{\text { iid }}{\sim} Z(x)$, then

$$
\max \left\{Z_{1}(x), \ldots, Z_{n}(x)\right\} \stackrel{D}{=} n Z(x), \quad x \in \mathcal{X}
$$

where \mathcal{X} represents a space/space-time domain of interest (e.g., the Rhine watershed within Switzerland over the years 2020-2100).
$\square \quad$ In the process case we first transform the process so that its marginal distributions are standard Fréchet at every x.
http://stat.epfl.ch
CLADAG—Milano - slide 18

Construction of a max-stable process

Let $W(x)$ be a non-negative random process with $\mathrm{E}\{W(x)\}=1(x \in \mathcal{X})$, and let

$$
\begin{equation*}
Z(x)=\sup _{j} R_{j} W_{j}(x), \quad x \in \mathcal{X} \tag{1}
\end{equation*}
$$

with $\left\{R_{j}\right\}$ a Poisson process on \mathbb{R}_{+}of rate $\mathrm{d} r / r^{2}$ and $\left\{W_{j}\right\}$ replicates of W.
\square Then

$$
\mathrm{P}\{Z(x) \leq z(x), x \in \mathcal{X}\}=\exp \left(-\mathrm{E}\left[\sup _{x \in \mathcal{X}}\left\{\frac{W(x)}{z(x)}\right\}\right]\right)=\exp [-V\{z(x)\}]
$$

say, and this gives:

- a max-stable process $\{Z(x): x \in \mathcal{X}\}$, i.e., there exist functions $\left\{b_{n}(x)\right\}$ and $\left\{a_{n}(x)\right\}>0$ such that

$$
Z(x) \stackrel{D}{=} \max _{j=1}^{n}\left\{\frac{Z_{j}(x)-b_{n}(x)}{a_{n}(x)}\right\}, \quad x \in \mathcal{X}
$$

- $\quad Z(x) \sim$ unit Fréchet at each $x \in \mathcal{X}$.
\square In fact any max-stable process can be written using the spectral representation (1).
\square Example: Smith (1990) model ...

Making a Smith process

http://stat.epfl.ch
CLADAG—Milano - slide 20

Making a Smith process

http://stat.epfl.ch

Making a Smith process

http://stat.epfl.ch
CLADAG—Milano - slide 22

Making a Smith process

http://stat.epfl.ch
CLADAG—Milano - slide 23

Making a Smith process

http://stat.epfl.ch
CLADAG—Milano - slide 24

Making a Smith process

http://stat.epfl.ch
CLADAG—Milano - slide 25

Making a Smith process

http://stat.epfl.ch
CLADAG—Milano - slide 26

Making a Smith process

http://stat.epfl.ch

Comments

Numerous max-stable models now exist, some more 'realistic' than others
\square Particularly flexible example is the Brown-Resnick process, which takes

$$
W(x)=\exp \{\varepsilon(x)-\gamma(x)\},
$$

where $\varepsilon(x)$ is a stationary or intrinsically stationary Gaussian process with semi-variance or semivariogram $\gamma(x)$-can use panoply of functions γ from spatial statistics, or can invent your own.

http://stat.epfl.ch
CLADAG—Milano - slide 28

Realisations from spatial models

Top: results from the latent variable, Student t copula, Hüsler-Reiss copula and extremal- t copula models. Bottom: results from the Smith, Schlather, geometric Gaussian and Brown-Resnick models. The histograms are of 1000 realisations of a summary of rainfall centred on Zürich, and the vertical lines correspond to the realizations shown.

Extremal coefficient

For any set $\mathcal{D} \subset \mathcal{X}$, homogeneity of V means that a max-stable model satisfies

$$
\mathrm{P}\{Z(x) \leq z, x \in \mathcal{D}\}=\exp \left\{-V_{\mathcal{D}}(z)\right\}=\exp \left\{-V_{\mathcal{D}}(1) / z\right\}=\left(e^{-1 / z}\right)^{V_{\mathcal{D}}(1)}, \quad z>0
$$

and the extremal coefficient

$$
\theta_{\mathcal{D}}=V_{\mathcal{D}}(1)
$$

summarises the degree of dependence of the extremes in \mathcal{D}.
$\square \quad$ In particular, the pairwise version,

$$
\theta\left(x, x^{\prime}\right)=\mathrm{E}\left[\max \left\{W(x), W\left(x^{\prime}\right)\right\}\right], \quad x, x^{\prime} \in \mathcal{X}
$$

can be regarded as an analogue of the correlation coefficient, with

$$
\text { (total dependence) } 1 \leq \theta\left(x, x^{\prime}\right) \leq 2 \quad \text { (independence), }
$$

and the interpretation

$$
\mathrm{P}\left\{Z\left(x^{\prime}\right)>z \mid Z(x)>z\right\} \sim 2-\theta\left(x, x^{\prime}\right), \quad z \rightarrow \infty
$$$\theta$ can be estimated nonparametrically, either as a basis for model checking, or for simple estimation of parameters.

Likelihood inference

Suppose we have independent (annual) maxima observed at $\mathcal{D}=\left\{x_{1}, \ldots, x_{D}\right\} \subset \mathcal{X}$ for n years, so the data for each year have joint distribution

$$
\mathrm{P}\left\{Z\left(x_{1}\right) \leq z_{1}, \ldots, Z\left(x_{D}\right) \leq z_{D}\right\}=\exp \left\{-V\left(z_{1}, \ldots, z_{D}\right)\right\}, \quad z_{1}, \ldots, z_{D}>0
$$

The formulation of the model using its CDF means that to compute the likelihood function we must differentiate e^{-V} with respect to z_{1}, \ldots, z_{D}, leading to combinatorial explosion:

$$
-V_{1} e^{-V}, \quad\left(V_{1} V_{2}-V_{12}\right) e^{-V}, \quad\left(-V_{1} V_{2} V_{3}+V_{12} V_{3}[3]-V_{123}\right) e^{-V}, \quad \ldots,
$$

with about 10^{5} terms for $D=10$. Clearly this is infeasible for realistic applications, so we need to avoid this, by

- using a composite (usually a pairwise) likelihood; or
- using the timing of events to chose the term of the partition in the likelihood;
- using threshold exceedances.In any case we must compute (many) derivatives of V, and sometimes integrate them ... can be painful.

Extremal dependence on river network

Sources of dependence between data at locations x_{1} and x_{2} on the network \mathcal{X} :

- flow-dependence; x_{2} is downstream of x_{1}, or vice versa
- 'geo'-dependence: the same events may impact nearby watershedsOverall semi-variogram

$$
\gamma\left(x_{1}, x_{2}\right)=\lambda_{\mathrm{RIV}}\left\{1-C_{\mathrm{RIV}}\left(x_{1}, x_{2}\right)\right\}+\lambda_{\mathrm{GEO}} \gamma_{\mathrm{GEO}}\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in \mathcal{X}
$$

where $\lambda_{\text {RIV }}, \lambda_{\text {EUC }}>0$.
\square Flow-dependence in terms of shortest river distance $d(\cdot, \cdot)$:

$$
\begin{aligned}
C_{\operatorname{RIV}}(s, u) & =C_{1}\{d(s, u)\} \times \sqrt{0.6}, \\
C_{\mathrm{RIV}}(s, t) & =C_{1}\{d(s, t)\} \times \sqrt{0.4 \times 0.3}, \\
C_{\mathrm{RIV}}(u, t) & =0, \\
C_{1}(h) & =\exp (-h / \theta), \quad \theta>0 .
\end{aligned}
$$

http://stat.epfl.ch
CLADAG—Milano - slide 32

Upper Danube Basin

Asadi, Davison, Engelke (2016) Annals of Applied Statistics

Extremal dependence on river network

\square Introduce hydrological location of each station, as $h(x) \in \mathbb{R}^{2}$ as centroid of its sub-catchment, and define dependence measure

$$
\gamma_{\mathrm{EUC}}\left(x_{1}, x_{2}\right)=\left\|h\left(x_{1}\right)-h\left(x_{2}\right)\right\|^{\alpha}, \quad \alpha \in(0,2] .
$$

http://stat.epfl.ch

Extremal coefficients

Hydrological Distance

Threshold exceedances
Individual events

http://stat.epfl.ch
CLADAG—Milano - slide 37

Exceedances and risk functions

\square Modelling threshold exceedances is widely used in (scalar) practice:

- more flexible than using maxima
- statistically more efficient, makes better use of data
\square For scalar data, choosing rare events is easy: either they're big or they're small.For multivariate data, we need to say what 'direction' is extremeDo this via a scalar risk function f applied to the individual events $Q_{j}(x)=R_{j} W_{j}(x)$ of the max-stable process
- Choose those events Q_{j} for which $f\left(Q_{j}\right)$ exceeds a threshold u
- Red: extremes on $[0,2]$, selected using risk function

$$
f(Q)=\int_{0}^{2} Q(x) d x
$$

- Blue: most intense events, selected using risk function

$$
f(Q)=\max Q(x)
$$

http://stat.epfl.ch

Extremes in $[0,2]$

Highest peaks anywhere

http://stat.epfl.ch
CLADAG—Milano - slide 41

Inference

Fitting for the 'exceedances' Q_{j} is (in principle) much easier than for the max-stable process $Z(x)$:

- likelihoods can be constructed, at least for Gaussian-based processes $W(x)$ but
- they still involve lots of burdensome integrals to compute norming constants.Fixes
- estimate the integrals using quasi-Monte Carlo or other methods,
- avoid likelihood inference, using the gradient score to dodge computing the norming constants.

Big problems ($D \approx 1000$ s) feasible with the gradient score, smaller ones ($D \approx 100$ s) with quasi-Monte Carlo approximation.

Extreme rainfall over Florida

$\square \quad 15$-minute radar rainfall measurements over Florida from 1994-2010
\square We focus on a $120 \mathrm{~km} \times 120 \mathrm{~km}$ square south-west of Orlando and on the wet season, i.e., June to September.

http://stat.epfl.ch
CLADAG—Milano - slide 43

Florida rainfall

Local rainfall

Spatially dispersed rainfall

Risk functionals

We define two risk functionals

$$
f_{\max }\left(X^{*}\right)=\left[\sum_{i=1}^{\ell}\left\{X^{*}\left(s_{i}\right)\right\}^{20}\right]^{1 / 20}, \quad f_{\operatorname{sum}}\left(X^{*}\right)=\left[\sum_{i=1}^{\ell}\left\{X^{*}\left(s_{i}\right)\right\}^{\xi_{0}}\right]^{1 / \xi_{0}}
$$

where $\ell=3600$ is the number of grid cells.
\square Here

- $\quad f_{\text {max }}$ is a continuous and differentiable approximation of $\max _{i=1, \ldots, \ell} X^{*}\left(s_{i}\right)$ which satisfies the requirements for the gradient score,
- $\quad f_{\text {sum }}$ selects events with large spatial cover. The power ξ_{0} approximately transforms the data X^{*} back to a scale where summing observations has a physical meaning.

Spatial model and parameter estimates

$\square \quad$ Non-separable semi-variogram model

$$
\gamma\left(x_{i}, x_{j}\right)=\left\|\frac{\Omega\left(x_{i}-x_{j}\right)}{\tau}\right\|^{\kappa}, \quad x_{i}, x_{j} \in[0,120]^{2}, \quad i, j \in\{1, \ldots 3600\}
$$

with $0<\kappa \leqslant 2, \tau>0$ and anisotropy matrix

$$
\Omega=\left[\begin{array}{cc}
\cos \eta & -\sin \eta \\
a \sin \eta & a \cos \eta
\end{array}\right], \quad \eta \in\left(-\frac{\pi}{2} ; \frac{\pi}{2}\right], \quad a>1
$$

Fitted parameters obtained for both risk functionals with exceedances of $f_{\max }\left(X^{*}\right)$ and $f_{\text {sum }}\left(X^{*}\right)$ over the 99 quantile:

	κ	τ	η	a
$f_{\max }$	$1.192_{0.02}$	$9.06_{0.19}$	$0.08_{0.61}$	$1.008_{0.005}$
$f_{\text {sum }}$	$0.326_{0.007}$	$46.67_{0.018}$	$-0.30_{0.10}$	$1.064_{0.017}$

- $\quad f_{\max }$ estimates are quite smooth with a small scale, they capture high quantiles and induce a model similar to that in earlier work.
- For $f_{\text {sum }}$, the semi-variogram is rougher but with a much larger scale, which is consistent with large-scale events.
- Anisotropy does not seem significant.

Simulated extreme rainfall

15-minute cumulated rainfall (inches): observed (first row) and simulated (second and third rows) for the risk functionals $f_{\text {sum }}$ (left) and $f_{\max }$ (right) with intensity equivalent to the 0.99 quantile.

Closing

Basic ideas on maxima and point processes extend to spatial and space-time settings.Max-stable processes give asymptotic dependence models-asymptotic independence can be bothersome in practice, but models exist to account for it.$\square \quad$ Can fit such models using

- pairwise likelihood (can be inefficient),
- full likelihood (needs additional information, difficult with large D),
- Bayesian methods, or
- gradient score methods.Model-checking possible, using simulation from fitted models and other techniques-but difficult to validate far into tails, because of lack of data.
\square Current 'hot' research area: lots going on (e.g., threshold models, non-stationarity, gridded data, non-Euclidean spaces, ...).

Some reading

Coles (2001), Introduction to the Statistical Modeling of Extreme Values, Springerde Haan and Ferreira (2006) Extreme Value Theory: An Introduction, SpringerDavison and Huser (2015) Annual Review of Statistics and its Applicationsde Haan (1984) Annals of ProbabilitySmith (1990) unpublishedDavison, Padoan and Ribatet (2012) Statistical ScienceWadsworth and Tawn (2012) BiometrikaThibaud, Mutzner and Davison (2013), Water Resources ResearchHuser and Davison (2014) J. R. Statist. Soc., series BWadsworth and Tawn (2015) BiometrikaThibaud and Opitz (2015) BiometrikaAsadi, Davison and Engelke (2016) Annals of Applied Statisticsde Fondeville and Davison (2016) arXiv