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Today’s themes

Introduction
How to cluster ordinal data?

Clustering ordinal data
Is pairwise likelihood a workable solution?
(StCo 2014)

Simultaneous clustering and reduction
How to identify latent factors explaining the clustering structure?
(e.g. factors explaining the between variability)
By-products: noise variables identification, parsimonious modeling.
(Psychometrika, 2017)

Clustering mixed-type data
Is composite likelihood a workable solution?
(CSDA 2017)
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Introduction
How to cluster ordinal data?
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Introduction. How to cluster ordinal data?

An illustrative example...

Three-way cross-classification of U.S. sample (N=1517) by
happiness, years of schooling and number of siblings

Number of Siblings
Year of School

Completed 0-1 2-3 4-5 6-7 8+
Not too Happy

< 12 15 34 36 22 61
12 31 60 46 25 26

13-16 35 45 30 13 8
17+ 18 14 3 3 4

Pretty Happy
< 12 17 53 70 67 79

12 60 96 45 40 31
13-16 63 74 39 24 7
17+ 15 15 9 2 1

Very Happy
< 12 7 20 23 16 36

12 5 12 11 12 7
13-16 5 10 4 4 3
17+ 1 2 9 0 1

...our output: we classify the cells!
(response profiles)
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Introduction. How to cluster ordinal data?

Finite mixture of Gaussians

A frequently used clustering model is the finite mixture of Gaussians.

f (x;θ) =
G∑

g=1

pgφP
(
x;µg ,Σg

)
where:

φP
(
x;µg ,Σg

)
: P-variate Gaussian density with mean µg and

covariance matrix Σg ;

p1, p2, ..., pG : set of positive weights that sum to 1.

Use/Interpretation

Each Gaussian density (component) is interpreted as a cluster
(sub-population);

pg is the probability that an observation comes from the g -th
sub-population.
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Introduction. How to cluster ordinal data?

After the estimation of model parameters (usually by ML), observations
are assigned to clusters by maximizing the posterior probability

p(h|xr ) =
phφP (xr ;µh,Σh)∑G

g=1 pgφP
(
xr ;µg ,Σg

) ∝ phφP (xr ;µh,Σh)

i.e., the scaled density.

Problems with rank data

It works on continuous data;

Category scores are arbitrary;

Is the Gaussian assumption true?

Conclusion. We should develop a new model appropriate for the ordinal
nature of the data (or their measurements).
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Introduction. How to cluster ordinal data?

Theoretical Framework

Let

x1, x2, . . . , xP be the observed ordinal variables;

ci = 1, . . . ,Ci be the associated categories for i = 1, . . . ,P;

πr (θ) = Pr(x1 = c1, x2 = c2, . . . , xP = cP ;θ) be the probability of the
response pattern xr . It is a function of θ s.t. πr (θ) ≥ 0 and∑

r πr (θ) = 1.

For a random i.i.d. sample of size N the log-likelihood is

`(θ; x) =
R∑

r=1

nr log πr (θ) ,

where nr is the sample frequency of response pattern xr and
∑

r nr = N.

⇓

Different models corresponds to different reparameterizations of πr .
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Introduction. How to cluster ordinal data?

IRT & URV approaches (Factor Analysis)

Item Response Theory (IRT) - Bock & Moustaki, 2007

x1, x2, . . . , xP : observed ordinal variables;

y1, y2, . . . , yQ : latent variables (Q < P);

local independence assumption: the observed variables given the
latent ones are independent.

The probability of a response pattern xr is

πr (θ) = Pr(x1 = c1, x2 = c2, . . . , xP = cP ;θ) =

∫
Y

P∏
i=1

p(ci | y)g(y)dy.
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Introduction. How to cluster ordinal data?

Underlying Response Variable (URV) - Lee et al., 1990; Muthén, 1984

x1, x2, . . . , xP : observed ordinal variables;

y1, y2, . . . , yP : latent continuous variables (usually Gaussians);

the latent relationship between x and y is explained by a threshold
model,

xi = ci ⇔ γ
(i)
ci−1 ≤ yi < γ

(i)
ci .

The probability of a response pattern xr is

πr (θ) = Pr(x1 = c1, . . . , xP = cP ;θ) =

∫ γ
(1)
c1

γ
(1)
c1−1

· · ·
∫ γ

(P)
cP

γ
(P)
cP−1

φP(y; 0,R)dy.
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Introduction. How to cluster ordinal data?

A picture on the existing literature

Extensions of IRT and URV approaches to cluster analysis are obtained by
assuming y as having a particular clustering structure.

IRT → LCA: Q = 1 and y nominal discrete (Goodman, 1974); y
finite mixture of Gaussians (Cagnone & Viroli, 2012; McParland et
al., 2012);

URV → ordinal variables are generated by thresholding a multivariate
homoscedastic (Everitt, 1988) or heteroscedastic (Lubke et al., 2008)
normal mixture density.

In both cases the computation of the likelihood is highly demanding
because it requires the computation of multidimensional integrals.

Beside these approaches, we find: Mixture of latent variables for mixed data

(Browne & McNicholas, 2012); Optimization clustering techniques (Huang, 1998;

Chaturvedi et al., 2001); Probabilistic (Giordan & Diana, 2011);
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Clustering ordinal data
Is pairwise likelihood a workable solution?
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Clustering ordinal data

Our proposal

Aim:
Capturing both cluster structure and dependence within the
groups. ⇒ Latent Gaussian Mixture following URV approach

Strengths:

we do not assume the local independence;
it is possible to include an arbitrary number of ordinal variables;
it is possible to estimate both class conditional means and covariance
matrices of the latent variables.

Main problems:

How can we estimate this model efficiently?
⇒ Composite likelihood (pairwise) approach.
What are the conditions to identify the model?
⇒ Link with the log-linear models.
How can we classify the objects?
⇒ Different possible solutions.
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Clustering ordinal data

Model assumptions

y ∼ f (y) =
∑G

g=1 pgφP
(
y;µg ,Σg

)
;

ordinal variables x are generated by thresholding y.

It follows that the probability of response pattern xr in cluster g is given by

πr
(
µg ,Σg ,γ

)
= Pr(x1 = c1, x2 = c2, . . . , xP = cP |g)

=

∫ γ
(1)
c1

γ
(1)
c1−1

· · ·
∫ γ

(P)
cP

γ
(P)
cP−1

φP(y;µg ,Σg )dy,

while the unconditional probability of response pattern xr is given by

πr (θ) =
G∑

g=1

pgπr
(
µg ,Σg ,γ

)
.

Rocci & Ranalli Clustering Ordinal Data Sept 14, 2017 13 / 72



Clustering ordinal data

For a random i.i.d. sample of size N the log-likelihood is

`(θ; x) =
R∑

r=1

nr log

 G∑
g=1

pgπr
(
µg ,Σg ,γ

) .

Existing proposals: Everitt (1988) and Lubke et al. (2008) use a MLE...

...This approach is computationally demanding and is not feasible for
more than few categorical variables.
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Clustering ordinal data

Estimation Problem - Looking at some possibilities...

Full Information Maximum Likelihood: this approach is not feasible

for more than few variables (Everitt and Merette, 1990).

Limited Information Maximum Likelihood
Three Stage Estimation (Muthén, 1984) ⇒ it cannot be adopted.
The thresholds cannot be estimated through the univariate marginal
distributions, since they are not identified.
Underlying Bivariate Normal (Jöreskog and Moustaki, 2001) ⇒
maximizes the sum of all univariate and bivariate marginal
loglikelihoods. Redundant, information contained in the univariate
marginals is already in the bivariate ones.
Composite maximum likelihood (Lindsay, 1988; Varin et al., 2011):
We suggest the use of the Pairwise Likelihood Approach.
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Clustering ordinal data

Our choice/suggestion: Pairwise likelihood approach

The pairwise log-likelihood is the sum of all bivariate log-likelihoods

p`(θ; x) =
P−1∑
i=1

P∑
j=i+1

`(θ; (xi , xj))

=
P−1∑
i=1

P∑
j=i+1

Ci∑
ci=1

Cj∑
cj=1

n
(ij)
cicj log

 G∑
g=1

pgπ
(ij)
cicj |g

 ,

where n
(ij)
cicj is the observed frequency of a response in category ci and cj

for variables xi and xj respectively, while π
(ij)
cicj |g is

π
(ij)
cicj |g =

∫ γ
(i)
ci

γ
(i)
ci−1

∫ γ
(j)
cj

γ
(j)
cj−1

φ
(
xi , xj ;µi |g , µj |g , σii |g , σjj |g , ρij |g

)
dxidxj
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Clustering ordinal data

In general, pairwise maximum likelihood estimators are less efficient than
FML, even if in many cases the loss in efficiency is very small or almost
null (Lindsay, 1988; Varin et al., 2011), but much more efficient in terms
of computational complexity (Ranalli et al. 2017). It has been proven that
they are still consistent and asymptotically normal.

Parameter estimates are computed through a pairwise EM algorithm,
whose complete pairwise log-likelihood is

p`c(θ; x) =
P−1∑
i=1

P∑
j=i+1

Ci∑
ci=1

Cj∑
cj=1

G∑
g=1

n
(ij)
cicj z

(ij)
cicj |g

[
log
(
π

(ij)
cicj |g

)
+ log (pg )

]
.
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Clustering ordinal data

Identifiability conditions

Investigating the identifiability conditions can be carried out...

...empirically : if the observed information matrix is full rank, then the
model is locally identified;

...heuristically : if the same maximized likelihood is obtained with
different parameter estimates starting the EM algorithm from
different values, then the model is not identified;

...theoretically : the conditions needed to identify a model depend on
its structure.

Necessary condition: given a C1 × C2 × . . .× CP contingency table, the
number of model parameters has to be less than C =

∏P
i=1 Ci − 1.
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Clustering ordinal data

the necessary condition is

P∏
i=1

Ci − 1 ≥ G − 1︸ ︷︷ ︸
pg

+ P(G − 1)︸ ︷︷ ︸
µ2, . . . , µG

+P(P − 1)/2︸ ︷︷ ︸
R1

+ (G − 1)P(P + 1)/2︸ ︷︷ ︸
Σ2, . . . ,ΣG

+
P∑
i=1

Ci − P.

︸ ︷︷ ︸
thresholds

the threshold parameters γ do not change over the components
⇒ mean and variance of yi , fixed to 0 and 1, respectively, only in one
component;

when P = 1 the model is not identified;

when P = 2, in some cases the model could be identified (e.g. when
G = 2 and c1 = c2 = 4), but it is not identified in others (e.g. when
G = 2 and c1 = c2 = 3).
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Clustering ordinal data

...but the pairwise loglikelihood works only with the bivariate marginals.

Example
Let us consider 3 binary variables

FML → 8 cells → 7 parameters

PML → 3 bivariate marginal distributions → 4 cells + 4 cells + 4 cells →
9 parameters?

Note that the 3 bivariate marginals can be reproduced by using a log-linear
model with only two factor interactions (6 parameters).

The number of parameters needed to saturate the pairwise likelihood is
equal to the number of parameters involved in a hierarchical log linear
model with two-factor interaction terms
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Clustering ordinal data

Necessary condition: the maximum number of estimable parameters
has to be less than or equal to∑P

i=1(Ci − 1) +
∑P−1

i=1

∑P
j=i+1(Ci − 1)(Cj − 1).

Important: we are assuming that the clustering structure can be
identified by the bivariate marginals.

How can we check for local identifiability? ...there are some intuitions

look at the rank of the Godambe Information matrix;

look at the rank of the Jacobian matrix, i.e. the derivatives of the
log-linear parameters w.r.t. the latent mixture parameters (Forcina,
2008).
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Clustering ordinal data

Is the clustering structure identified by the bivariate marginals?
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Clustering ordinal data

Continuous case: finite mixtures of Gaussians

Proposition 1. Let h(x;θ) =
∑G

g=1 pgφ(x;µg ,Σg ) be an element of

HGP and hij(xi , xj ;θ
(ij)) be its bivariate marginal density with respect to xi

and xj , if for any g 6= h (g , h = 1, . . . ,G ) we have

(µi ,g , µj ,g , σii ,g , σij ,g , σjj ,g ) 6= (µi ,h, µj ,h, σii ,h, σij ,h, σjj ,h) (1)

then hij(xi , xj ;θ
(ij)) belongs to HG2 and it has G components.

marginal (i , j):
if the parameters are distinct
then the number of clusters is identified
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Clustering ordinal data

Proposition 2. Let h(x;θ) =
∑G

g=1 pgφ(x;µg ,Σg ) and

h(x; θ̃) =
∑G̃

g=1 pgφ(x; µ̃g , Σ̃g ) be two members of HGP . If they are such
that

p1 > p2 > · · · > pG , p̃1 > p̃2 > · · · > p̃G

and for every i 6= j = 1, 2, . . . ,P

−hij(xi , xj ;θ(ij)) = hij(xi , xj ; θ̃
(ij)

)

−(µi ,g , µj ,g , σii ,g , σij ,g , σjj ,g ) 6= (µi ,h, µj ,h, σii ,h, σij ,h, σjj ,h), g 6= h = 1, . . . ,G

−(µ̃i ,g , µ̃j ,g , σ̃ii ,g , σ̃ij ,g , σ̃jj ,g ) 6= (µ̃i ,h, µ̃j ,h, σ̃ii ,h, σ̃ij ,h, σ̃jj ,h), g 6= h = 1, . . . , G̃ ,

then h(x;θ) = h(x; θ̃).

Ordinal case?
Further cautions...
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Clustering ordinal data

How do we classify?

Response patterns are assigned to the components according to

argmaxh p(h | xr ) = argmaxh phπr (µh,Σh,γ) ,

BUT, we do not estimate πr |g = πr
(
µg ,Σg ,γ

)
directly...

Three possible alternatives:

FMAP compute πr |g . There are multidimensional integrals involved
but they have to be evaluated only once;

IMAP approximate πr |g with a distribution having the same
(estimated) bivariate marginals (IPF algorithm). We considered the
case of a log-linear model having only the two-factor interactions
different from zero;

CMAP substitute the likelihood of the response on component h
with its pairwise version.
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Clustering ordinal data

Simulation Study

AIM: evaluating the effect of some experimental factors on
classification performance.

The pairwise likelihood approach is compared to the full maximum
likelihood and the maximum likelihood for continuous data.

Simulation design: 250 samples in eight different scenarios
considering three different experimental factors:

sample size - N = 1000, 5000;
thresholds - equidistant or non;
separation between clusters - well or non well separated.

To evaluate the classification performance of the methods two
different measures of classification recovery have been considered

Crisp: Adjusted Rand Index (ARI), 1 best - 0 or < 0 worst
Fuzzy: LOSS measure, 0 best - 1 worst
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Clustering ordinal data

Results: ARI

Equidistant thresholds - N=1000,5000 - Well separated groups.
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Clustering ordinal data

Results: ARI

Non-Equidistant thresholds - N=1000,5000 - Well separated groups.
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Clustering ordinal data

Results: ARI

Equidistant thresholds - N=1000,5000 - Non-Well separated groups.
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Clustering ordinal data

Results: ARI

Non-Equidistant thresholds - N=1000,5000 - Non-Well separated groups.
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Clustering ordinal data

Results: LOSS

Equidistant thresholds - N=1000,5000 - Well separated groups.
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Clustering ordinal data

Results: LOSS

Non-Equidistant thresholds - N=1000,5000 - Well separated groups.
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Clustering ordinal data

Results: LOSS

Equidistant thresholds - N=1000,5000 - Non-Well separated groups.
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Clustering ordinal data

Results: LOSS

Non-Equidistant thresholds - N=1000,5000 - Non-Well separated groups.
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Clustering ordinal data

Model selection: information criteria

How can we choose the number of components?

Gao & Song (2010): C-BIC = −2p`(θ̂; x) + logNtr
(
Ĥ
−1
V̂

)
;

Varin & Vidoni (2005): C-AIC = −2p`(θ̂; x) + 2tr
(
Ĥ
−1
V̂

)
.

Where

H = E (−∇2p`) is the sensitivity matrix;

V = V (∇p`) is the variability matrix.

In FML the two matrices are equal.

Challenge: the estimation of H and V
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Clustering ordinal data

General Social Survey

It is a three-way cross-classification table of 1,517 people on three ordinal variables: happiness

(3 categories), completed years of schooling (4 categories), and number of siblings (5

categories), analysed by Goodman (1984) and re-analysed recently by Giordan et al. (2011).

Number of Siblings
Year of School

Completed 0-1 2-3 4-5 6-7 8+
Not too Happy

< 12 15 34 36 22 61
12 31 60 46 25 26

13-16 35 45 30 13 8
17+ 18 14 3 3 4

Pretty Happy
< 12 17 53 70 67 79

12 60 96 45 40 31
13-16 63 74 39 24 7
17+ 15 15 9 2 1

Very Happy
< 12 7 20 23 16 36

12 5 12 11 12 7
13-16 5 10 4 4 3
17+ 1 2 9 0 1

Model choice - C-AIC and C-BIC

G=1 G=2 G=3
C-AIC 22772 22730 22754
C-BIC 22937 22896 22972
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Clustering ordinal data

General Social Survey - Output Analysis

there is a clear
classification
between the two
groups as the years
of school
completed and
number of siblings
increase;

the variable
happiness has not a
discriminative
power.
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Clustering ordinal data

An advanced simulation study

Through a model-based method using a pairwise likelihood approach.

A clustering benchmark: when the latent mixture is observed...

Fisher’s Iris data Idea
Ordinal variables are generated by

thresholding a latent mixture

is the cluster structure
recovered?

how good is the proposal
compared to the existing
models?
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Clustering ordinal data

The robustness of clustering problem. Fisher’s Iris data

150 four dimensional observations
(sepal length & width; petal length
& width) of three different species
of Iris: Iris setosa, Iris versicolour
and Iris virginica;

to re-analyze these data under our
proposal, the variables have been
categorized;

the data have been normalized by
the mean and the standard deviation
of the first group (Iris setosa);

the threshold parameters have been
chosen such that the cluster
structure has not been completely
destroyed (ARI is maximized);

combination of four and three
categories & the thresholds are
equidistant.

Response patterns nr Response patterns nr
1 1 1 1 1 3 1 3 2 3
1 1 2 2 4 3 1 3 3 1
1 1 3 2 1 3 1 4 3 1
1 2 1 1 16 3 2 3 2 16
1 3 1 1 19 3 2 3 3 10
2 1 2 2 3 3 2 4 2 1
2 1 3 2 4 3 2 4 3 10
2 1 3 3 1 3 3 3 2 1
2 2 2 2 4 3 3 3 3 1
2 2 3 2 14 3 3 4 3 4
2 2 3 3 7 4 2 3 2 1
2 3 1 1 8 4 2 4 2 1
2 3 3 2 1 4 2 4 3 8
2 4 1 1 6 4 3 4 3 3
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Clustering ordinal data

Fisher’s Iris data - Comparative Analysis

Some observations...

pairwise EM initialized from the
true empirical values →
ARI=0.9222;

pairwise EM initialized randomly
considering 1000 different starting
points → ARI=0.8005;

the overlap between the second
and third group reflects on a
larger classification uncertainty;

robustness of clustering problem:
even if the data were categorized,
the cluster structure has been
recovered satisfactorily.

ARI - Clustering performances
Ordinal variables as metric Ordinal variables as ordinal

k-means 0.6615 MCA & k-means (3 fact.) 0.5676
HomFMG(D) 0.6634 MCA & k-means (2 fact.) 0.7874
HomFMG(F) 0.5153 LFMG (TV) 0.9222
HetFMG(F) 0.4128 LFMG (RV) 0.8005

Confusion matrix - Fisher’s Iris data
G=1 G=2 G=3

G=1 50 0 0
G=2 0 46 4
G=3 0 4 46
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Simultaneous clustering and reduction
How to identify latent factors explaining

the clustering structure?
(e.g. factors explaining the between variability)

By-products: noise variables identification, parsimonious modeling.
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Simultaneous clustering and reduction

Simultaneous reduction and clustering for ordinal data

Three-way cross-classification of U.S. sample
Number of Siblings

Year of School
Completed 0-1 2-3 4-5 6-7 8+

Not too Happy
< 12 15 34 36 22 61

12 31 60 46 25 26
13-16 35 45 30 13 8
17+ 18 14 3 3 4

Pretty Happy
< 12 17 53 70 67 79

12 60 96 45 40 31
13-16 63 74 39 24 7
17+ 15 15 9 2 1

Very Happy
< 12 7 20 23 16 36

12 5 12 11 12 7
13-16 5 10 4 4 3
17+ 1 2 9 0 1

...these are our main
questions
What are the latent factor
that explain the clustering
structure?
and
How are they related with the
observed variables?

The aim is to propose a model for simultaneous clustering and
dimensionality reduction of the ordered categorical data using a

composite likelihood approach.
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Simultaneous clustering and reduction

Recalling model assumptions

x1, x2, . . . , xP : observed ordinal variables;

y1, y2, . . . , yP : latent continuous variables;

the latent relationship between x and y explained by a threshold
model,

xi = ci ⇔ γ
(i)
ci−1 ≤ yi < γ

(i)
ci .

The probability of a response pattern xr is given by

Pr(x1 = c1, . . . , xP = cP ;θ) =
G∑

g=1

pg

∫ γ
(1)
c1

γ
(1)
c1−1

· · ·
∫ γ

(P)
cP

γ
(P)
cP−1

φ(y;µg ,Σg )dy

where pg is the probability of belonging to group g subject to pg > 0 and∑G
g=1 pg = 1.
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Simultaneous clustering and reduction

Key points of the proposal

observed ordinal variables are a discretization of underlying
first-order latent continuous variables y.

first order latent variables are linear combinations of second-order
latent variables ỹ.

x← y = Aỹ← ỹ

To detect informative/noise dimensions second-order latent variables
are divided into two groups:

Q informative/discriminant factors distributed as a finite mixture of
Gaussians;

Q̄ = P − Q non informative/noise factors distributed as a Gaussian.

All relevant information about the clustering structure is captured by the
set of informative/discriminant latent variables.
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Simultaneous clustering and reduction

Model parameters
Since y = Aỹ, then

µg = E (y|g) = AE (ỹ|g) = A



ηg ,1
...

ηg ,Q
η0,Q+1

...
η0,P


= A

[
ηg
η0

]

and

Σg = V (y|g) = AV (ỹ|g)A′ = A

[
Ωg 0
0 Ω0

]
A′.

Parsimonious Modeling: some parameters are set to zero or equal to
others.
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Simultaneous clustering and reduction

Parameters estimation
The parameters are estimated by maximizing the pairwise log-likelihood (if
the FML is infeasible).

Estimates computation
The maximization of the pairwise log-likelihood is done by using a pairwise
EM algorithm.

Model selection
The number of components and/or discriminative dimensions is chosen by
minimizing the C-BIC.
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Simultaneous clustering and reduction

Identifiability conditions

given a C1 × C2 × . . .× Cp contingency table, the necessary
condition for the identifiability is that the number of model
parameters can be at most

P∑
i=1

(Ci − 1) +
P−1∑
i=1

P∑
j=i+1

(Ci − 1)(Cj − 1);

the threshold parameters γ do not change over the components;

the first two thresholds are fixed to 0 and 1, respectively;

some constraints on Ω0, Ω1 and A to solve the rotational
indeterminacy.
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Simultaneous clustering and reduction

Rotational Indeterminacy

Writing A = [A1,A2], we note that we have the sum of two factor analysis
(FA) models

y = Aỹ = A1ỹQ + A2ỹQ̄

They have the same rotational freedom of the FA model, i.e.

y = A1T1T−1
1 ỹQ + A2T2T−1

2 ỹQ̄

= A∗1ỹ∗Q + A∗2ỹ∗Q̄

In order to make the parameters identified, and then estimable, we put
some constraints: Ω0 = I, Ω1 = I. Such constraints still allow a rotational
freedom by orthonormal matrices. This can be eliminated by requiring a
“lower” triangular form for the two loading matrices. In general, A1 and
A2 have a lower triangular matrix in the first Q and (P − Q) rows,
respectively. Of course, after the estimation the parameter matrices can be
rotated to enhance the interpretation.
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Simultaneous clustering and reduction

Noise variables

One important step is to identify the observed variables that could be
considered as noise.

Intuitively this information is included in the correlation matrix
between the first and second order latent variables.

AV (ỹ)

V (ỹ) accounts for both the between and within variance of the
mixture.

The variables x corresponding to first order latent factors y that are
well correlated with the noise factors ỹQ̄ are identified as noise.

It is also important to evaluate for each first order factor the
percentage of variance explained by the informative second order
factors.
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Simultaneous clustering and reduction

Simulation Study

AIM: evaluating the effect of some experimental factors on
classification performance;

simultaneous clustering & dimensionality reduction approach
with m = 2 and m = 3 compared with the naive clustering
approach (i.e. Q = P), LCA estimated with m = P;

simulation design: 250 samples in eight different scenarios
considering two different experimental factors:

sample size - N = 1000, 5000;
separation between clusters - well or non well separated;
# of components and variables: G=2, P=5, Q=2; G=3, P=8, Q=3;

we assess the assumptions of local independence of LCA (correlated
vs non-correlated noise variables);

we assess the performances of model selection;

ARI is used to evaluate the performance in terms of goodness of
recovery of the true clustering structure.
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Simultaneous clustering and reduction

First Scenario - P=5 and G=2

Box-plots of ARI for the posterior probabilities. Data generated from a two-component
latent mixture; 5 ordinal variables with 5 categories; 3 of them are noise variables.
N=1000,5000. High/Low separation. Independent noise variables.
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Simultaneous clustering and reduction

Second Scenario - P=8 and G=3

Box-plots of ARI for the posterior probabilities. Data generated from a three-component
latent mixture; 8 ordinal variables with 5 categories; 5 of them are noise variables.
N=1000,5000. High/Low separation. Independent noise variables.
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Simultaneous clustering and reduction

Third Scenario - Correlated Noise Variables

Box-plots of ARI for the posterior probabilities. 250 samples generated from G = 2 and

G = 3, with correlated noise variables, and N=1000,5000. G = 2: 5 ordinal variables

with 5 categories, 3 of them are noise variables. G = 3: 8 ordinal variables with 5

categories, 5 of them are noise variables.

G=2

G=3
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Simultaneous clustering and reduction

Fourth Scenario - Model Selection

ARI for the best model chosen through C-BIC compared to the ARI of the
true model.
G = 2, 5 ordinal variables with 5 categories. High degree of separation and
independent noise variables. N = 1000. 50 samples have been generated
with Q = 1, 2, 3, 4.
For each of the 200 samples 5 different models have been fitted.

Mean St.Dev q=0.025 q=0.25 q=0.5 q=0.75 q=0.975
C-BIC ARI 0.9674 0.0796 0.9431 0.9694 0.9959 1.0000 1.0000

True Fitted ARI 0.9797 0.0247 0.9488 0.9796 0.9918 1.0000 1.0000
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Simultaneous clustering and reduction

General Social Survey

It is a three-way cross-classification table of 1,517 people on three ordinal
variables: completed years of schooling (4 categories), number of siblings
(5 categories), and happiness (3 categories).

Number of Siblings
Year of School

Completed 0-1 2-3 4-5 6-7 8+
Not too Happy

< 12 15 34 36 22 61
12 31 60 46 25 26

13-16 35 45 30 13 8
17+ 18 14 3 3 4

Pretty Happy
< 12 17 53 70 67 79

12 60 96 45 40 31
13-16 63 74 39 24 7
17+ 15 15 9 2 1

Very Happy
< 12 7 20 23 16 36

12 5 12 11 12 7
13-16 5 10 4 4 3
17+ 1 2 9 0 1
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Simultaneous clustering and reduction

General Social Survey

Model choice - C-BIC & BIC

C-BIC - m = 2 BIC - m = 3
G=1 G=2 G=3 G=1 G=2 G=3

Q=1 24717 22848 22890 12950 12610 12770

Q=2 23151 22881 22891 13193 12634 12831

Q=3 22937 22896 22972 12294 12367 12463

Correlations between y (by rows) and ỹ (by columns) variables 0.9987 0.0509 0.0000

−0.4951 0.8439 −0.2065
−0.1884 0.2074 0.9600
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Simultaneous clustering and reduction

General Social Survey - Output Analysis

there is a clear classification between the two groups as the
education level increases;

the variable happiness has not discriminative power.

Table: Empirical Evidence on the presence of noise dimensions between years of
schooling (X1), number of siblings (X2) and happiness (X3) by pairs.

Bivariate Polychoric φ-Coefficient Cramer’s V Goodman-Kruskal γ
marginals correlation (s.e.) [C.I. 95%]
X1 & X2 -0.425 0.394 0.227 -0.425 (0.025) [-0.474,-0.377]
X1 & X3 -0.161 0.165 0.116 -0.169 (0.036) [-0.24, -0.099]
X2 & X3 0.073 0.13 0.092 0.07 (0.033) [0.006, 0.135]
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Simultaneous clustering and reduction

ISSP - Output Analysis

Multi-way table taken from the International Social Survey Programme
(ISSP) on environment in 1993.
The possible answers to each question are: (1) strongly agree, (2)
somewhat agree, (3) neither agree nor disagree, (4) somewhat disagree,
(5) strongly disagree.

Questions
X1: We believe too often in science, and not enough in feelings and faith
X2: Overall, modern science does more harm than good
X3: Any change humans cause in nature, no matter how scientific, is likely
to make things worse
X4: Modern science will solve our environmental problems with little
change to our way of life
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Simultaneous clustering and reduction

Table: Model choice according to C-BIC and BIC for pairwise likelihood approach
(m = 2) and full likelihood approach (m = 4), respectively.

C-BIC - m = 2 BIC - m = 4
G=1 G=2 G=3 G=4 G=1 G=2 G=3 G=4

Q=1 37228 38003 34875 34887 35735 31070 31107 31130
Q=2 34850 39094 35223 34925 33815 31069 31076 31167
Q=3 37111 33267 34925 34968 37450 31036 31054 31161
Q=4 38957 38468 38092 40876 32569 31172 31246 31287

ỹ

y


0.9258 0.5422 0.2135 0.4377
0.4350 0.9421 0.5070 0.4466
0.3094 0.4952 0.8756 0.5150

−0.2758 −0.2592 −0.4968 0.8082

 .
The noisy dimension is mainly given by the fourth question
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Simultaneous clustering and reduction

Table: Empirical Evidence on the presence of a noise dimension between X1, X2,
X3 and X4 by pairs.

Bivariate Marginals Polychoric Corr. φ-Coefficient Cramer’s V Goodman-Kruskal γ (s.e.) [C.I. 95%]
X1 & X2 0.421 0.488 0.244 0.402 (0.0304) [0.335, 0.470]
X1 & X3 0.400 0.441 0.220 0.400 (0.035) [0.330, 0.467]
X2 & X3 0.488 0.545 0.273 0.474 (0.032) [0.411, 0.537]
X1 & X4 0.034 0.229 0.115 0.039 (0.039) [-0.037, 0.116]
X2 & X4 0.005 0.291 0.146 0.026 (0.040) [-0.052 0.105]
X3 & X4 0.072 0.393 0.197 -0.073 (0.041) [-0.154 0.007]

Looking at the posterior probabilities of the response patterns (although
they are not included in the paper), it seems that the two groups cluster
individuals based on the score assigned to the questions - high score on the
first two questions (bad feeling towards science) and low score on the third
one. As a consequence, the two groups can be interpreted as degree of
belief in science (or faith, conversely) - strong vs. weak.
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Clustering mixed-type data
Is composite likelihood a workable solution?
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Clustering mixed-type data

A real data example: Credit Scoring data

BAccount: a factor with levels no - good running - bad running,
quality of the credit clients bank account;

Months: duration of loan in months;

Past: a factor with levels bad payer - good payer if the client
previosly have been a bad or good payer;

Use: a factor with levels private – professional, the use to which the
loan is made;

DM: the size of loan in DM;

Gender: a factor with levels M – F, sex of the client;

Status: a factor with levels no single - single, status of the client.

There are 1000 loan applicants: 300 are bad and 700 are good.

We want to capture the cluster structure
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Clustering mixed-type data

Model assumptions

Continuous data ∪ Ordinal data =?

y1, . . . , yP continuous variables

x1, . . . , xQ(Q ≤ P) ordinal variables

y ∼ f (y) =
∑G

g=1 pgφP
(
y;µg ,Σg

)
;

ordinal variables x are generated by thresholding yQ ;

For a random i.i.d. sample of size N with mixed-type data the
log-likelihood is

`(θ; x, yQ̄) =
N∑

n=1

log

 G∑
g=1

pgφQ̄(yQ̄n ;µQ̄
g ,Σ

Q̄
g )πn

(
µ
Q|Q̄
n;g ,Σ

Q|Q̄
g ,γ

) .
...Adopting a ML approach is computationally demanding and is not

feasible for more than few ordinal variables (Everitt & Merette, 1990).
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Clustering mixed-type data

How can we estimate it efficiently?

We adopt a composite likelihood approach distinguishing three blocks of
marginals

sub-set of continuous variables
marginal distribution of the continuous variables ∼ heteroscedastic
Gaussian mixture

sub-set of ordinal variables
all bivariate marginal distributions of ordinal variables ∼ partial
manifestation of the underlying heteroscedastic Gaussian mixture

sub-set of mixed-type variables
the marginal distributions given by all continuous variables and only
one ordinal variable.
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Clustering mixed-type data

The composite log-likelihood is

c`(θ) =
N∑

n=1

log

 G∑
g=1

pgφQ̄(yQ̄n ;µQ̄
g ,Σ

Q̄Q̄
g )

+

+
Q−1∑
i=1

Q∑
j=i+1

N∑
n=1

Ci∑
ci=1

Cj∑
cj=1

δ
(ij)
ncicj log

 G∑
g=1

pgπ
(ij)
cicj (µ

(ij)
g ,Σ

(ij)
g ,γ(ij))

+

+
Q∑
j=1

N∑
n=1

Cj∑
cj

δ
(j)
ncj log

 G∑
g=1

pgπ
(j |Q̄)
cj (µ

(j |Q̄)
n;g , σ

(j |Q̄)
g ,γ j)φQ̄(yQ̄n ;µQ̄

g ,Σ
Q̄Q̄
g )


Estimates are computed by using an EM-like algorithm.
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Clustering mixed-type data

Classification & Model Selection

Classification
FMAP
The posteriors are computed by using the composite likelihood
estimates.
IMAP
Computationally infeasible.
CMAP
Assign the observation to the component corresponding to the
maximum composite fit.

Model Selection

cCLC = −2c`(ψ̂) + 2EN(p̂),

where EN works as a penalty term, it is the composite-entropy of the
fuzzy classification obtained in the E-step of the EM-like algorithm.
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Clustering mixed-type data

Simulation study design

250 samples simulated from a latent mixture of Gaussians in 4
scenarios with 2 experimental factors: sample size (N = 100, 500)
and separation degree between clusters.

competitors:
1 Naive. The ordinal nature is ignored and the variables are treated as

they were metric;
2 Continuous Naive. An heteroscedastic Gaussian mixture is fitted

considering only continuous variables;
3 Ordinal Naive. The ordinal nature is ignored and the variables are

treated as they were metric;
4 Composite. The proposed model is fitted through a composite

likelihood. The observations are assigned to the components based on
CMAP or FMAP;

5 Full. The proposed model is fitted through full maximum likelihood.

ARI is the index used to measure the goodness of models/algorithms;
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Clustering mixed-type data

Simulation study output

Figure: Box-plots of ARI for the posterior probabilities. Data generated from

two-component mixture model partially observed; 3 ordinal variables with 5 categories

and 3 continuous variables. N=100,500. Separated/non-separated means for continuous

variables. 250 samples.
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Clustering mixed-type data

Credit Scoring Data

Has the cluster structure been captured?

Table: Model selection

G=1 G=2 G=3
cCLC 24978 18864 22973

Table: Confusion matrix

Default=1 Default=0
Cluster 1 220 10
Cluster 2 80 690

Credit risk profile

mainly single females

with a lower credit-quality bank account

who were bad payers in the past

and asked a loan for private use.
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Thank you!
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